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Abstract

Overruled Lagrangian cones arise in practice as the graphs of the differentials of
generating functions of genus 0 Gromov-Witten invariants. This paper provides a de-
tailed account of the proof of this fact given in [2], along with all background knowl-
edge needed to understand it. We then turn to describing the set of overruled La-
grangian cones. According to [1], an overruled Lagrangian cone can be reconstructed
from a single point, but it is hard to tell if reconstruction on a given point will yield
an overruled Lagrangian cone. This paper takes the route of starting with a single
ruling space. Ruling spaces are D-modules, and one can be specified by the connec-
tion describing its D-module structure. Reconstruction turns into an action of a lie
algebra, consisting of differential operators in Novikov’s variables, on the space of
connections. Overruled Lagrangian cones are orbits of this action.

Introduction

Let H be a finite dimensional vector space over k with a non-degenerate symmetric inner
product and let H = H((z)). Consider the decomposition H = H+ ⊕H− given by de-
composing a Laurent series into its power series and polar parts respectively. Let π+ and
π− be the projections ontoH+ andH−. EndowH with the symplectic form

Ω( f , g) = Resz=0( f (z), g(−z))

where f , g ∈ H and (, ) denotes the inner product on H. (H,Ω) is the symplectic loop
space of H.

Definition. An overruled Lagrangian cone L ∈ H is a Lagrangian submanifold whose tangent
spaces are k[[z]] submodules, that project isomorphically toH+ under π+, such that each tangent
space T is tangent to L along zT.

The first part of this paper, origins, describes in detail how overruled Lagrangian cones
arise from Gromov Witten theory, which is intersection theory on moduli spaces of holo-
morphic curves in a given target space. A certain class of intersection numbers on moduli
space, for a given genus g, are encoded in a generating function called the genus g descen-
dant potential. The descendant potential is a formal function onH+, and the graph of the
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differential of the genus 0 descendant potential turns out to be an overruled Lagrangian
cone in H. A substantial section of this paper is devoted to proving this fact. This encod-
ing of descendants is well known in the literature, and has proved very useful. This paper
provides a self contained and detailed exposition that assumes little prior knowledge. I
chose to follow the proof in the appendix of [2] because it is conceptually very interesting.
One defines a family of modified generating functions, parameterized by H∗(X), called
ancestor potentials, then the relationship between ancestor potentials and the descendant
potential proves overruledness. Interestingly, the formalism of quantization plays a key
role in the proof. The genus 0 theory is somehow the classical limit of the theory of all
genera.

The second part of this paper, incarnations, is original joint work of Alexander Given-
tal and I, culminating in an alternative description of what an overruled Lagrangian cone
is. Before summarizing this, it should be mentioned that we will be dealing with over-
ruled Lagrangian cones, not over a field, but over a power series ring R = Q[[Q1, ..., Qr]].
We can either view R as the ground ring, or imagine a family of overruled Lagrangian
cones over spec(R). Whenever we talk about Laurent series or polynomials over R, they
are actually only required to polynomial or Laurent modulo all powers of the maximal
ideal of R. The overruled Lagrangian cones of interest have the additional property that
their tangent spaces are D-modules, where D is, roughly speaking, an algebra of differ-
ential operators in Q1, ..., Qr. Each tangent space can be specified by a connection, which
in our case, concretely is a tuple of r matrices with coefficients in R satisfying some prop-
erties. An overruled Lagrangian cone will correspond to a family of connections, that is
an integral of a very interesting distribution.

Origins

Gromov Witten Invariants

Let X be a compact Kähler manifold and let Xg,n,d be the Kontsevich moduli space of de-
gree d stable maps of genus g curves with n marked points to X [8]. Here d is a class in
H2(X,Z) which is representable by a holomorphic curve. For each marked point there is
an evaluation map evi : Xg,n,d→ X given by evaluation at the i’th marked point. The pull-
backs of cohomology classes on X by these evaluation maps are important cohomology
classes on Xg,n,d which we will consider in our intersection theory. Classical enumerative
geometry questions of the form ”how many genus g, degree d curves pass through the
cycles Y1, ...,Yl ⊂ X?” can be answered by intersecting these classes.

The other cohomology classes we consider are called ψi. Let π : Xg,n+1,d→ Xg,n,d be the
map that forgets the n + 1′st marked point. With this projection we may interpret Xg,n+1,d
as the universal curve over Xg,n,d. Sometimes Xg,n+1,d is written Cg,n,d to emphasize this
interpretation. Let s1, ..., sn : Xg,n,d → Cg,n,d denote the sections corresponding to marked
points 1 through n. Let Li be the line bundle who’s fiber at a curve is the cotangent
space to that curve at the i’th marked point. Formally Li is the conormal bundle of si.
Let ψi be the first Chern class of Li. Intersection numbers of the classes ψi and ev∗i (φ) are
called gravitational descendants (according to Witten, they are related to two dimensional
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gravity [9]) and they will be our main object of study.

Universal Relations

Gravitational Descendants satisfy a few interesting relations which we now derive. The
same symbols will be used to denote Li and ψi on each Xg,n,d, and π will always denote
forgetting the last marked point, so the meaning of these symbols depends on context.
We will usually understand cohomology classes via Poincare dual cycles. The following
results are literally true if X is convex, that is each tangent space is spanned by global
vector fields. In the non-convex case, one must construct virtual fundamental classes [7] for
Xg,n,d for our results to hold. Everything rests on the following lemma which compares
ψi ∈ Xg,n,d and ψi ∈ Xg,n+1,d. Let [si] denote the cohomology class Poincare dual to si.

Lemma (Comparison Lemma).
ψi = π∗ψi + [si]

Proof. We have a map π∗Li→ Li given by the differential of the map of universal curves
Cg,n+1,d → Cg,n,d. This differential is an isomorphism, except when the i′th point is on
a component that collapses, in which case it is zero. This happens when the i′th and
n + 1′st marked points lie on an irreducible component that is mapped to a point in X.
Such curves are precisely those over si, thus

ψi = π∗ψi + n[si]

for some integer n. Note that s∗i Li is trivial whereas s∗i π∗Li = Li, so

s∗i (Li ⊗ (π∗Li)
−1) = L−1

i

L−1
i is the normal bundle of si so its Chern class is s∗i [si]. Taking the Chern classes we get.

s∗i ψi − s∗i π∗ψi = s∗i [si]

Which implies that n = 1.

Note that forgetting points and evaluation commute, so π∗ev∗(u) = ev∗(u).

Theorem 1 (String Equation). If Xg,n,d is non-empty than∫
Xg,n+1,d

ψk1
1 · · ·ψ

kn
n ev∗1(φ1) · · · ev∗n(φn) =

n

∑
i=1

∫
Xg,n,d

ψk1
1 · · ·ψ

ki−1
i · · ·ψkn

n ev∗1(u1) · · · ev∗n(un)

Proof. ψi and [si] have intersection product zero because s∗i Li is trivial so we have

(π∗ψi)
n = (ψn

i − Di,n+1)
n = ψn

i + [−Di,n+1]
n

The pullback of a class on Xg,n,d to Xg,n+1,d will have dimension greater than zero so we
have

0 =
∫

Xg,n+1,d

π∗ψk1
1 · · ·π

∗ψkn
n ev∗1(u1) · · · ev∗n(un)
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=
∫

Xg,n+1,d

(ψk1
1 + (−[s1])

k1) · · · (ψkn
n + (−[sn])

kn)ev∗1(u1) · · · ev∗n(un)

The hyperplanes si do not intersect one another so non vanishing terms can have at most
one.

0=
∫

Xg,n+1,d

ψk1
1 · · ·ψ

kn
n ev∗1(u1) · · · ev∗n(un)+

n

∑
i=1

∫
Xg,n+1,d

ψk1
1 · · · (−[si])

ki · · ·ψkn
n ev∗1(u1) · · · ev∗n(un)

The result follows from interpreting one copy of [si] in the integrand as pulling the rest of
the integrand back to Xg,n,d by si. Recall that s∗i [−si] = ψi.

Theorem 2 (Dilaton Equation). The pushforward of ψn+1 by π is 2g− 2 + n. This leads to∫
Xg,n+1,d

ψk1
1 · · ·ψ

kn
n ψn+1ev∗1(u1) · · · ev∗n(un) = (2g− 2+ n)

∫
Xg,n,d

ψk1
1 · · ·ψ

kn
n ev∗1(u1) · · · ev∗n(un)

Proof. It is equivalent but more convenient to compute the pushforward of ψ1 by π1 where
π1 is the map that forgets the first marked point. (π∗)nL1 on Xg,n+1,d is isomorphic to the
relative cotangent bundle of π1 : Xg,n+1,d→ Xg,n,d. Smooth fibers of π1 are genus g curves
and a section of the relative cotangent bundle defines a 1-form on each fiber so will vanish
2g− 2 times on each smooth fiber. This means (π∗)nψ1 has intersection number 2g− 2
with each smooth fiber. Iterative application of the comparison lemma gives

ψ1 = (π∗)nψ1 + (π∗)n−1[s1] + (π∗)n−2[s1] + · · ·+ [s1]

A smooth fiber of π1 will thus have intersection number 2g− 2 + n with ψ1 so π∗ψn+1 =
(2g− 2 + n). This means∫

Xg,n+1,d

π∗(ψk1
1 · · ·ψ

kn
n )ψn+1ev∗1(u1) · · · ev∗n(un) = (2g− 2+n)

∫
Xg,n,d

ψk1
1 · · ·ψ

kn
n ev∗1(u1) · · · ev∗n(un)

Since s∗i Ln + 1 is trivial, the cup products [si]ψn+1 are zero so using the comparison lemma
gives the result.

Theorem 3 (Divisor Equation). The pushforward of ev∗n+1(u) by π is (u,d). This leads to∫
Xg,n+1,d

ψk1
1 . . . ψkn

n ev∗1(u1) . . . ev∗n(un)ev∗n+1(u) = (u,d)
∫

Xg,n,d

ψk1
1 . . . ψkn

n ev∗1(u1) . . . ev∗n(un)

+
n

∑
i=1

∫
Xg,n,d

ψk1
1 · · ·ψ

ki−1
i · · ·ψkn

n ev∗1(u1) · · · ev∗i (uui) · · · ev∗n(un)

Note that this is a generalization of the string equation.

Proof. Let Σ ∈ Xg,n,d. Its image will have intersection number (u,d) with u so there are
(u,d) places where we can add a marked point such that it will land on u. This means
that there are (u,d) points in π−1(Σ) that lie on ev∗n+1(u) so the pushforward of ev∗n+1(u) is
(u,d). On the image of si, the i’th and n + 1′st points get stuck together so si ◦ evn+1 = evi.
It follows that s∗i ev∗n+1(u) = ev∗i (u). Using a similar argument as in the proof of the string
equation shows the result.
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Theorem 4 (WDVV Equation). Let {φα} and {φα} be dual bases of H∗(X). The expression

∑
d′+d′′=d, α

∫
[X0,3,d′ ]

ev∗1(ui)ψ
ki
1 ev∗2(uj)ψ

ki
2 ev∗3(φα)

∫
[X0,3,d′′ ]

ev∗1(uk)ψ
kk
1 ev∗2(ul)ψ

kl
2 ev∗3(φ

α)

is the same when i, j,k, l is any permutation of 1,2,3,4.

Intuitively this is because we can glue two curves with 3 marked points together by
their third marked points, then deform the curve so that the double point splits the four
points into different pairings.

Proof. M0,4 is isomorphic to CP1 with three special points 0,1,∞ representing nodal curves
with the three pairings of the four points. The isomorphism is given by the cross ratio.
There is a map ct : X0,4→M0,4 that sends a stable map to its underlying curve, contracting
components that become unstable to points. Let Γ denote the pullback of the cohomology
class of a point on M0,4 by ct. We will show that the above integrand is equal to

∫
X0,4,d

Γ
4

∏
i=1

ev∗i (ui)ψ
ki
i =

∫
ct−1(γ)

4

∏
i=1

ev∗i (ui)ψ
ki
i

We will do the integral when γ = 0,1,∞ so that it is over nodal curves. This nodal locus
is isomorphic to the disjoint union, over all choices of d′ and d′′ which sum to d, of the
preimages of the diagonal ∆X under the map

X0,3,d′ × X0,3,d′′
ev3×ev3−−−−→ X× X

The cohomology class Poincare dual to ∆X is ∑α φα ⊗ φα. The result more or less follows.

Degenerate Cases

There are two cases where Xg,n,d exists but Xg,n−1,d does not, namely X0,3,0 and X1,1,0.
X0,3,0 is isomorphic to X and all evaluation maps are identity. The line bundles L1, L2 and
L3 on X0,3,0 are trivial so intersection numbers involving ψ1,ψ2, and ψ3 are zero. If no ψ
classes are included than we have∫

X0,3,0

ev∗1(u)ev∗2(v)ev∗3(w) =
∫

X
uvw

X1,1,0 is isomorphic to X×M1,1 where M1,1 is the moduli space of elliptic curves with one
marked point. It turns out that

∫
M1,1

ψ1 =
1
24 which has to do with the fact that M1,1 is an

orbifold [5]. We thus have that ∫
X1,1,0

ψ1ev∗1(u)

is 1
24 if u is a point and 0 otherwise.
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Correlators

Correlator notation simplifies many formulas.

Definition.
〈u1ψk1 , ...,unψkn〉g,n,d :=

∫
[Xg,n,d]

ev∗1(u1)ψ
k1
1 . . . ev∗n(un)ψ

kn
n

〈u1ψk1 , ...,unψkn〉g,n := ∑
d

Qd〈u1ψk1 , ...,unψkn〉g,n,d

Where u1, . . . ,un ∈ H∗(X).

The second type of correlator takes values in the Novikov Ring of X which is the power
series completion of the semigroup ring of the cone M⊂ H2(X,Z) of classes representable
by holomorphic curves. It is generated by {Qd : d ∈ M} subject to QdQd′ = Qd+d′ . Explic-
itly the Novikov ring is C[[Qd1 , ..., Qdr ]] where d1, ...,dr is a basis of M. We extend correla-
tors to be multilinear functions over the Novikov ring, so they can take inputs of the form
t(ψ)where t ∈ H+. In correlator notation our universal relations take the following form.

String Equation:
〈u1ψk1 , ...,unψkn ,1〉g,n+1 = ∑n

i=1〈u1ψk1 , ...,uiψ
ki−1, ...,unψkn〉g,n

Dilaton Equation:
〈...,ψ〉g,n+1 = (2g− 2 + n)〈...〉g,n

Divisor Equation:
〈u1ψk1 , ...,unψkn ,u〉g,n+1,d = (u,d)〈u1ψk1 , ...,unψkn〉g,n,d +∑n

i=1〈u1ψk1 , ...,uuiψ
ki−1, ...,unψkn〉g,n,d

WDVV Equation:
∑α〈u1ψk1 ,u2ψk2 ,φα〉0,3〈φα,u3ψk3 ,u4ψk4〉0,3 = ∑α〈u1ψk1 ,u3ψk3 ,φα〉0,3〈φα,u2ψk2 ,u4ψk4〉0,3

Exceptional genus zero case:
〈u,v,w〉0,3,0 = (u,v,w)

Descendant Potential and the J-function

Let (H,Ω) be the symplectic loop space of H∗(X) with the Poincare pairing.

Definition. The genus g descendant potential Fg is a formal function on H+ at t = 0 (a power
series in the coefficients of t) given by

Fg(t) = ∑
n≥0

1
n!
〈t(ψ), ..., t(ψ)〉g,n

H+ and H− are complementary Lagrangian subspaces so we may identify H with
T∗H+. We use this identification to define the formal function J :H+→H by

J (t) = (t− z,dF0(t))
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dF is a closed 1-form onH+ thus the image of J is a Lagrangian submanifold. Let us call
this Lagrangian submanifold L. The shift −z is called the dilaton shift, and we introduce
it because it makes the singularity of the cone lie at the origin.

Ancestors, and Proof that L is Overruled

To prove that L is an overruled cone we must introduce a broader class of invariants.
There is a morphism ct : Xg,m+l,d→ Mg,m called the contraction map given by forgetting
l marked points and the map to X. Components that become unstable contract to points.
Let L̄i be the pullback of the line bundle Li on Mg,m by ct and let ψ̄i be the first Chern class
of L̄i. We introduce new correlator notations to denote intersection numbers including
the classes ψ̄i. These correlators depend on a parameter τ ∈ H∗(X) which we associate to
the marked points forgotten by ct which don’t have ancestor classes.

〈a1(ψ, ψ̄), ...,am(ψ, ψ̄)〉τg,m,d := ∑
l

1
l!

∫
[Xg,m+l,d]

m

∏
i=1

(ev∗i ai)(ψi, ψ̄i)
m+l

∏
i=m+1

ev∗i τ

〈a1(ψ, ψ̄), ...,am(ψ, ψ̄)〉τg,m := ∑
d

Qd〈a1(ψ, ψ̄), ...,am(ψ, ψ̄)〉τg,m,d

We also introduce a new generating function

F̄ τ
g (t) = ∑

1
m!
〈t(ψ̄), ..., t(ψ̄)〉τg,m

called the ancestor potential. By definition, the terms with (g,m)∈ {(0,0), (0,1), (0,2), (1,0)}
are zero because they correspond to unstable curve types so the corresponding spaces
Mg,m don’t exist.

Definition. Let Sτ be the matrix with z−1 series coefficients given by

(Sτu,v) = (u,v) +
∞

∑
i=0

z−1−i〈uψi,v〉τ0,2

where u,v ∈ H(X).

This will be the matrix that maps L to Lτ. To prove this we will first prove a ”quan-
tum” version that involves all genera, then take the ”classical limit”. The quantum ver-
sion of the Lagrangian section L is

D = exp(
∞

∑
g=0

h̄g−1F τ∗
g )

considered as a function onH+ depending on h̄. Here ∗ denotes the dilaton shift: F (t) =
F ∗(t− z). F ∗ is a formal function in a neighborhood of −z. Functions and operators that
are power series of h̄ are called asymptotic, so D is an asymptotic function of H+. Dτ

is similarly defined for the ancestor potentials. In order to quantize Sτ, it must preserve
the symplectic form Ω. Let † denote the adjoint with respect to Ω. If M is a matrix over
R((z)) than M†(z) = M∗(−z), where ∗ denotes the adjoint with respect to the Poincare
pairing.
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Lemma. S†
τSτ = I

Proof. The proof is based on the identity

∑
α

〈ψku,1,φα〉τ0,2〈φα,1,ψlv〉τ0,2 = 〈ψku,1,ψlv〉τ0,2

which is the WDVV equation for ancestors with two inputs set to 1. The proof is left as
an exercise. By the string equation, S can be written as follows.

(Su,v) = ∑
k

z−1〈ψku,1,v〉

Now

(S†
τSτu,v) = ∑

α

(Sτu,φα)(S†
τφα,v)

= ∑
k,l,α

(−1)lz−k−l〈ψku,1,φα〉〈φα,1,ψlv〉

= ∑
k,l,α

(−1)lz−k−l〈ψku,1,ψlv〉

= ∑
k,l,α

(−1)lz−k−l(〈φk−1u,φlv〉+ 〈φku,φl−1v〉)

= (u,v)

According to the appendix, the quantization of S−1
τ acts by

Ŝ−1G(q) = eΩ(q,S−1π+Sq)G(π+Sq)

The actual operator sending Dτ to D differs from this by a constant factor F(τ) but this
doesn’t change the classical limit.

Theorem.
eF1(τ)Ŝ−1

τ Dτ = D

Proof. As a midway point between ancestors and descendants we introduce, for lack of a
better name, the τ dependent descendant potential:

F τ
g (t) = ∑

1
m!
〈t(ψ), ..., t(ψ)〉τg,m

Lemma. When the correlators exist, that is (g,m) /∈ {(0,0), (0,1), (0,2), (1,0)}, we have

〈t(ψ), ..., t(ψ)〉τg,m = 〈[Sτt]+(ψ̄), ..., [Sτt]+(ψ̄)〉τg,m

Where [ ]+ denotes the power series truncation of a Laurent series. It follows that for g > 1 we
have F τ

g (t) = F̄ τ
g ([Sτt]+).
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Proof. To write descendants in terms of ancestors, we must find the discrepancy between
Li and L̄i. ct induces a section of Hom(L̄i, Li) that is non vanishing on the compliment of
the divisor D of curves where xi lies on a component collapsed by ct. It turns out that the
normal bundle of D is identified with Hom(L̄, L) so we have [D] = ψ− ψ̄. D is the union
of the images of the maps

X0,2+l′′,d′′ ×X Xg,1+l′+m,d′ → Xm,l,d

over all l′, l′′,d′,d′′ such that l′ + l′′ = l and d′ + d′′ = d. Here ×X denotes taking the
preimage of ∆X under ev2 × ev1.

〈uψaψ̄b, ...〉τg,m = 〈uψa−1ψ̄b+1, ...〉τg,m + 〈uψa−1,φα〉τ0,2〈φαψ̄b, ...〉τg,m

Applying this formula iteratively we get

〈uψa, ...〉τg,m = 〈uψ̄a, ...〉τg,m +
a−1

∑
i=0
〈uψi,φα〉τ0,2〈φαψ̄a−1−i, ...〉τg,m

Lemma. F (t) = F τ(t− τ)

Proof. To relate F to F τ we do a Taylor series expansion.

F (t + ετ) = ∑
εn

n!
dn

dnε
F (t + ετ)

∣∣∣∣
ε=0

dn

dnε
F (t+ ετ)

∣∣∣∣
ε=0

=
∞

∑
m=0

1
m!

dn

dnε
〈t(ψ)+ ετ, ..., t(ψ)+ ετ〉

∣∣∣∣
ε=0

=
∞

∑
m=0

1
(m− n)!

〈t(ψ), ..., t(ψ)︸ ︷︷ ︸
m−n

,τ, ...,τ︸ ︷︷ ︸
n

〉

When m < n the summand vanishes. Letting k = m− n we have

F (t + τ) =
∞

∑
n=0

∞

∑
k=0

1
n!k!
〈t(ψ), ..., t(ψ)︸ ︷︷ ︸

k

,τ, ...,τ︸ ︷︷ ︸
n

〉 =
∞

∑
k=0

1
k!
〈t(ψ), ..., t(ψ)〉τ = F τ(t)

Replacing t with t− τ gives the result.

Combining the previous two lemmas we have for g > 1

Fg(t) = F̄ τ
g ([Sτ(t− τ)]+)

The dilaton shift simplifies this formula. By convention we let q = t− z so that F (t) =
F ∗(q).
Lemma. F ∗g (q) = F τ∗

g ([Sτq]+)
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Proof. First let us calculate [Sτz]+. Let v ∈ H∗(X)

([Sτz]+,v) = (z,v)+
[ ∞

∑
i=0

z−1−i〈zψi,v〉τ0,2

]
+

= (z,v) + 〈1,v〉τ0,2

= (z,v) + 〈1,v,τ〉0,3,0

= (z,v) + (v,τ)

Thus [Sτz]+ = z + τ. Now we see that

[Sτq]+ = [Sτ(t− z)]+ = [Sτt]+ − [Sτz]+ = [Sτt]+ − τ − z = [Sτt− τ]+ − z

This proves the lemma.

We must find the discrepancy of our formula in genus 0 and genus 1. In genus zero
there are three ”missing” ancestors so we get three terms in the discrepancy:

F0(t)− F̄ τ
0 ([Sτ(t− τ)]+) = F τ

0 (t− τ)− F̄ τ
0 ([Sτ(t− τ)]+)

= 〈〉τ0,0 + 〈t(ψ)− τ〉τ1,0 + 〈t(ψ)− τ, t(ψ)− τ〉τ2,0

We can use the dilaton equation to simplify. The dilaton equation implies the following
for τ dependent correlators.

〈ψ, ...〉τ0,n+1 = 〈...,τ〉τ + (n− 2)〈...〉τ

This can be used to show that the genus zero discrepancy is equal to 〈q(ψ),q(ψ)〉τ0,2. In
genus 1, there is one discrepancy term, 〈〉τ1,0, which we denote F1(τ) and is called the
genus 1 Gromov-Witten potential. Putting everything together, we have shown

D(q) = eF1(τ)e〈q(ψ),q(ψ)〉
τ
0,2/2h̄Dτ([Sτq]+)

It remains to check that 〈q(ψ),q(ψ)〉τ0,2 = Ω(q,S†π+Sq). The proof is very similar to the
proof that S†

τS = I and it is left as an exercise.

Corollary. SτL = Lτ

Theorem 5. L is an overruled Lagrangian cone.

We split this into the two following lemmas. Intuitively the Sτ roll L against H+

proving its overruledness.

Lemma. Lτ is tangent toH+ along zH+.

Proof. The dimension of M0,m is m− 3 so if t1, ..., tm ∈H+ are power series with at least m−
2 of them in zH+ than 〈t1, ..., tm〉τ0,m,d = 0. This means that all first and second derivatives
of F τ

g vanish along zH+. This means that Lτ is tangent toH+ along zH+.

10



Lemma. For any f = J(q) in a formal neighborhood of J(z1) there exists τ such that Sτf ∈ zH+

Proof. Let f = q + p be a point in L where q ∈ H+ and p ∈ H−. If π+Sτq ∈ zH+ than
π+Sτf∈ zH+ because Sτ fixesH−. If π+Sτf∈ zH+ than Sτf∈ zH+ because Sτf is guaran-
teed to lie in Lwhich contains zH+. Therefore, Sτf ∈ zH+ is equivalent to π+Sτq ∈ zH+.
This is equivalent to the z0 term of (Sτq,v) vanishing for all v ∈ H∗(X). This z0 term is
〈q(ψ),1,v〉τ0,3. Vanishing of 〈q(ψ),1,v〉τ0,3 for all v is equivalent to τ being a critical point
of 〈q(ψ),1〉τ0,2 considered as a function of τ. When q = q0 − z, it is the following function
modulo Q1, ..., Qr.

〈q0 − ψ,1〉τ0,2,0 = (q0,τ)− 〈1〉τ0,2,0 = (q0,τ)− 1
2
(τ,τ)

This function has a unique non-degenerate critical point τ = q0 therefore we can solve for
a critical point if we reintroduce the terms with Q1, ..., Qr. This guarantees existence of a
unique critical point τ(q) in a formal neighborhood of q = −z.

Now we even have an explicit parameterization of L as the union of the ruling spaces
zTτ = zSτH+.

The D-module property

Let D be the associative algebra over C[z] generated by Q1, ..., Qr and zQ1∂Q1 , ...,zQr∂Qr

with the relations [zQi∂Qi , Qj] = δijzQj. Let d1, ...,dr be a basis of H2(X,Z) consisting of
classes representable by holomorphic curves, and let p1, ..., pr be a Poincare dual basis of
H2(X). We define an action of D on H where Qi acts as a multiplication operator and
zQi∂Qi acts by zQi∂Qi − pi.

Definition. An overruled Lagrangian coneL is said to satisfy theD-module property if it satisfies
any of the following equivalent conditions:

1. Tangent spaces of L are D modules

2. Ruling spaces of L are D modules

3. The vector field f 7→ z−1D f is tangent to L for all D ∈ D.

The first two conditions are equivalent because D commutes with z. f /z being in a
tangent space is equivalent to f being in the corresponding ruling space so 2 and 3 are
equivalent. Note that z−1D is not closed as an associative algebra, but it is closed as a lie
algebra, so it makes sense for it to act infinitesimally onH.

Theorem 6. L satisfies the D module property.

Proof. The divisor equation implies that Sτ satisfies a system of differential equations. Let
{φα} be a basis of H∗(X) with φ0 = 1 and φi = pi for 1≤ i ≤ r. Let τα be the coefficients of
τ. Let us compute the terms of ∂τi(Sτu,v).

∂τi〈uψk,1,v〉τ0,3,d = 〈uψk,1,v,φi〉τ0,4,d = (φi,d)〈uψk,1,v〉τ0,3,d + 〈φiuψk−1,1,v〉τ0,3,d

11



Where the second term vanishes if k = 0. In the string equation case i = 0, this becomes

∂τ0〈uψk,1,v〉τ0,3 = 〈uψk−1,1,v〉τ0,3

In the case 1≤ i ≤ r it becomes

∂τi〈uψk,1,v〉τ0,3 = Qi∂Qi〈uψk,1,v〉τ0,3 + 〈φiuψk−1,1,v〉τ0,3

These are equivalent to the following differential equations.

z∂0Sτ = Sτ z∂τi Sτ = zQi∂Qi Sτ + Sτ pi

If we take the adjoint with respect Ω of the second equation we get

−z∂τi S
†
τ = −zQi∂Qi S

†
τ + piS†

τ

Since S−1 = S† this is equivalent to

(zQi∂Qi − pi)S−1 = z∂τi S
−1

Let S−1
τ h, with h ∈ zH+, be a point in the ruling space zTτ.

(zQi∂Qi − pi)(S−1h) = z(∂τi S
−1)h + ∑

α

(Qi∂Qi τα)z∂τα S−1
τ h + zS−1(Qi∂Qi h)

All of these terms lie in zTτ so zTτ is a D module.

Part 2: Incarnations

Reconstruction

Reconstruction is the fact, first stated in this form in [1], that an overruled Lagrangian
Cone with the D module property is completely determined by a single point on it. Let
L be an overruled Lagrangian cone with the D module property. The last form of the D-
module property implies that if f ∈ L, than exp(z−1D) f ∈ L, whenever the exponential
exists. Unfortunately the exponential does not always exist. For example exp(z−1) does
not lie inH. Still, we can say that exp(εz−1D) f maps spec(C[[ε]]) onto L. If z−1D f spans
the tangent space of L at f, than D 7→ exp(z−1D) f maps a formal neighborhood of 0 in
z−1D surjectively onto a formal neighborhood of f in L.

Lemma. If p1, ..., pr generate H∗(X), and f is the point of L that maps to −z under π+, than
z−1D f spans TfL.

Proof. Let Φα(p1, ..., pr) be polynomials that form a basis of H∗(X). The vectors vα =
z−1Φα(P1, ..., Pr) f form a basis of Tf over R[[z]]. Since Tf projects isomorphically to H+,
it is sufficient to show that π+vα form a basis of H+. π+vα do form a basis modulo the
maximal ideal IR of R.

π+[z−1Φα(P1, ..., Pr) f ] = −Φα(−p1, ...,−pr) mod IR

and this implies that they form a basis in general.
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In the case of Gromov Witten theory, reconstruction means that all Gromov Witten
invariants can be extracted from the single point f = J (−z). The original goal of this
research was to determine for which f ∈ π−1

+ (−1z) we get an overruled Lagrangian cone.
This would form a nice description of the space of overruled Lagrangian Cones. It turns
out that f must satisfy a system of differential equations corresponding to relations in
the cohomology algebra H∗(X), otherwise the resulting tangent space will be too big
and won’t project isomorphically to H+. However, it is hard to tell from f alone, or the
differential equations that f satisfies, weather the resulting overruled cone is Lagrangian.
For this reason we took a different approach.

An overruled cone L⊂H is determined by its tangent spaces. L can thus be regarded
as a submanifold in the Grassmannian of R[[z]] submodules ofH that project isomorphi-
cally to H+. Furthermore, if L has the D module property than it can be regarded as a
submanifold in the Grassmannian ofD-modules. If L is Lagrangian than it is restricted to
yet a smaller Grassmannian. I will refer to these Grassmannians as G,Glag,GD, and Glag,D.
The set of subspaces projecting isomorphically toH+ is an isolated connected component
of the Grassmannian of Q[[z]] modules, see [6]. Here, Grassmannian will always refer
to the subset in this component. The first goal of this section will be to give models of
these Grassmannians. The second goal will be to see how z−1D acts. It turns out that the
action of z−1D preserves G, GD and Glag,D. In the case of GD and Glag,D, D acts trivially by
definition, so the action descends to an action of D̃ = z−1D mod D which is isomorphic
to a subset of the lie algebra of vector fields on spec R.

Definition. Let us fix notation for some groups acting onH.

• LGL(n, R) is the group GL(n, R((z))). It is the loop group corresponding to GL(n, R).

• L(2)GL(n, R) is the subgroup of LGL(n, R) that preserves Ω. Explicitly L(2)GL(n, R) =
{S ∈ GL(n, R) : S†S = I} where S†(z) = S∗(−z).

• LGL(n, R)+ and L(2)GL(n, R)+ are the subgroups that preserve H+. I will call these the
upper loop group and upper twisted loop group. Elements of these have the form M0 +
zM1 + z2M2 + ... where M0 is invertible.

• LGL(n, R)− and L(2)GL(n, R)− are the subgroups that preserve H−. I will call these the
lower loop group and lower twisted loop group. Elements of these have the form I + zM1 +
z2M2 + ....

R[[z]] Modules and the Lower Loop Group

We will specify an element T ∈ G by the unique element of LGL(n, R)− that maps H+ to
T. It is given by the matrix who’s columns are the vectors π−1

+ (φα) ∩ T. In this way G is
identified with LGL(n, R)−.

Lemma. Let T ∈ G, and let M ∈ LGL(n, R) be the element of LGL(n, R)− that maps H+ to T.
T is Lagrangian if and only if M ∈ L(2)GL(n, R).
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Proof. If M ∈ L(2)GL(n, R) than it must send Lagrangians to Lagrangians so T is La-
grangian. Now suppose T is Lagrangian. This means that for all f , g ∈ H+,

Ω(M f , Mg) = Ω(MM†g, f ) = 0

SinceH+ is Lagrangian, we must have

MM†H+ ⊂H+

This means MM† must be a power series in z but by construction M and thus MM† is a
power series in z−1 with constant term I thus MM† is just I.

DModules and Connections

As before, let T ∈ G, and let M ∈ LGL(n, R) be the element of LGL(n, R)− that maps H+

to T. We must find a condition under which the operators zQi∂Qi − pi preserve T. This is
equivalent to M−1(zQi∂Qi − pi)M preservingH+. Expanding gives

M−1(zQi∂Qi − pi)M = zQi∂Qi + M−1(zQi∂Qi M)−M−1pi M

So T is a D module if and only if M−1(zQi∂Qi M)−M−1pi M has no z−1 terms. Note that
zQi∂Qi M is divisible by z so M−1(zQi∂Qi M)−M−1pi M can not have z terms. It follows
that if T is a D module, M−1(zQi∂Qi M)−M−1pi M is constant in z.Unfortunately such M
do not form a subgroup.

In general, a mapping of the elements zQi∂Qi ∈ D to differential operators of the form
zQi∂Qi + Ai where Ai are matrices in End(H+, R[[z]]) is called a connection. I will refer to
the connection itself as zQi∂Qi + Ai. As exemplified above, LGL(n, R) acts on connections
by conjugation which is usually called gauge transformation. We will call connections
that can be obtained from zQi∂Qi − pi by a gauge transformation trivializable. Let be Γ
the set of trivializable connections zQi∂Qi + Ai where Ai are constant in z. We have shown
that there is a map GD→ Γ. It will turn out to be a bijection but let us first describe Γ a bit.

Lemma. If zQi∂Qi + Ai is trivializable than [Ai, Aj] = 0 and Qj∂Qj Ai−Qi∂Qi Aj = 0 for all i, j.

Proof. Suppose there exists M ∈ LGL(n, R) such that M−1(zQi∂Qi − pi)M = zQi∂Qi + Ai.
This means

zQi∂Qi −M−1pi M + zM−1Qi∂Qi M = zQ1∂Q1 + Ai

−pi M + zQi∂Qi M = MAi

Qi∂Qi M = z−1(MAi + pi M)

The fact that the differential operators Qi∂Qi and Qj∂Qj commute will impose constraints
on Ai and Aj.

Qi∂Qi(Qj∂Qj M) = Qi∂Qi(z
−1(MAj + pjM))

= z−1((Qi∂Qi M)Aj + M(Qi∂Qi Aj) + pjQi∂Qi M)
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= z−1(z−1(MAi + pi M)Aj + M(Qi∂Qi Aj) + pjz−1(MAi + pi M))

= z−2(MAi Aj + pi MAj + pjMAi + pj pi M) + z−1M(Qi∂Qi Aj)

Now subtract from this with the result of applying Qi∂Qi then Qj∂Qj .

Qi∂Qi(Qj∂Qj M)M−Qj∂Qj(Qi∂Qi M)M = z−2M[Ai, Aj] + z−1M(Qi∂Qi Aj −Qj∂Qj Ai) = 0

If Ai are constant in z and equal to pi mod Q than there is a converse to this theorem.

Lemma. Suppose zQi∂Qi + Ai is a connection satisfying [Ai, Aj] = 0 and Qj∂Qj Ai−Qi∂Qi Aj =

0 with Ai constant in z and equal to pi mod Q, than it is trivializable by an element of LGL(n, R)−.

Proof. We must find the gauge transformation M turning zQi∂Qi − pi into zQi∂Qi + Ai. As
before, this can be written

Qi∂Qi M = z−1(MAi + pi M)

If we assume that M = I + z−1M1 + z−2M2 + ... than we may rewrite the equation as a
recurrence relation.

Qi∂Qi Mk+1 = Mk Ai + pi Mk

These relations are very redundant. The Qn1
1 · · ·Q

nr
r term of Mk+1 can be computed using

the recurrence relation for any i such that ni is not zero. However, our assumptions about
Ai guarantee that each gives the same result. The sequence of matrices Mr must even-
tually be divisible by higher and higher degree monomials of Q’s, because the constant
terms of Ai and pi are nilpotent, thus M is defined over R((z)).

Combining our results, we have proved that GD is in bijection with Γ which is in
bijection with the set of tuples of r commuting matrices over R, equal to pi mod Q, that
form a closed 1-form.

Remark. A tuple of r commuting matrices over R, equal to pi mod Q is a formal defor-
mations of H∗(X) over Spec(C[[Q1, ..., Qr]]). In Gromov-Witten theory the connection
corresponding S0 is the much studied quantum cohomology.

Lagrangian DModules and Symmetric Connections

Theorem 7. AD module T ∈ Γ is Lagrangian if and only if the corresponding connection consists
of matrices self adjoint with respect to the Poincare pairing.

Proof. First we show that if M is a gauge transformation such that M−1(Qi∂Qi)M = Qi∂Qi +
Ai, than Ai is self adjoint if and only if M is in the twisted loop group. The constant term
of M†M is I so it suffices to show that the derivative of Qi∂Qi(M†M) is zero. First calculate

Qi∂Qi M = z−1MAi

Qi∂Qi M
† = −z−1M† A†

i
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Then use these to calculate

Qi∂Qi(M†M) = (Qi∂Qi M
†)M + M†(Qi∂Qi M)

= −z−1M† A†M + z−1M† AM

= z−1M†(A− A†)M

This vanishes if and only if A − A† = 0. If D acts on H with the connection Qi∂Qi − pi
than the connection corresponding to a subspace MH+ is M−1(Qi∂Qi − pi)M. Since

Qi∂Qi − pi = ep log Q/z(Qi∂Qi)e
−p log Q/z

we see that e−p log Q/zM is the gauge transformation mapping Qi∂Qi to our connection
Qi∂Qi + Ai. e−p log Q/zMM†ep log Q/z is identity if and only if MM† is identity so the result
follows. Technically log Q is not in our ring but we can simply extend R to R[log Q]. Note
that we don’t need power series in log Q because pi are nilpotent.

Action of D̃
It will be advantageous to change our perspective. If L has the D module property with
respect to a connection, than SL has the D module property with respect to the gauge
transformed connection. Suppose MH+ is a tangent space of L corresponding to the
connection zQi∂Qi + Ai. S−1L is an overruled Lagrangian cone tangent to H+, with the
D-module property with respect to zQi∂Qi + Ai. Let D ∈ D and let DA denote its action
on H given by the connection zQi∂Qi + Ai. By the reconstruction theorem, the family of
matrices eεDA I map H+ to a family of tangent spaces to S−1L. We do a Birkoff factoriza-
tion eεz−1DA I = UεVε where Uε = Uε,0 + z−1Uε,1 + ... and Vε = I + zVε,1 + .... Note that
U0 = V0 = I. The derivative at ε = 0 is

z−1DA I = U′ + V′

Note that DA I is a polynomial in A1, ..., Ar with coefficients in R. We want to take the
derivative of the gauge transformation of A with respect to Uε.

d
dt
[U−1

ε (zQi∂Qi − Ai)Uε]ε=0 = zQi∂QiU
′ − [U′, Ai]

= zQi∂Qi(z
−1DA I −V′)− [z−1DA I −V′, Ai]

= Qi∂Qi(DA I)− zQi∂QiV
′ + [V′, Ai]

Note that we have used the fact that Ai all commute. If Ai = pi + z−1A1 + ... than [V′, A]
is divisible by z. The whole expression can not have any positive powers of z because
neither Uε nor A do. It follows that the infinitesimal change in connection that happens
when you are at the connection given by the matrices Ai, and moving along the vector
field f 7→ z−1Df, is Qi∂Qi(DA I). A polynomial in commuting symmetric matrix is a sym-
metric matrix so D indeed preserves the subspace of symplectic connections. In other
words, if you start with a Lagrangian D-module, reconstruction is guaranteed to make
you a Lagrangian cone.
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Appendix: Quantization of Lower Twisted Loop Group

We will first quantize quadratic Hamiltonians, then quantize elements in the lower twisted
loop algebra L(2)gl(n, R)−, then finally exponentiate to get quantizations of elements of
the lower twisted loop group L(2)GL(n, R)−.

Quadratic Hamiltonians

Quantization is a linear map f 7→ f̂ from Hamiltonians (functions) on H to asymptotic
differential operators onH+ satisfying.

[ f̂ , ĝ] = {̂ f , g} + higer order terms in h̄

We will only need to quantize quadratic Hamiltonians (homogeneous degree 2 functions)
so it is sufficient to define its action on degree 2 Darboux monomials. Let {qν} and {pν}
be Darboux coordinates ofH+ respecting the polarizationH =H+ ⊕H−. Define

q̂νqµ =
1
h̄

qνqµ q̂ν pµ = qν∂qµ p̂ν pµ = h̄∂qν ∂qµ

You can check that this is a quantization.

Lower Twisted Loop Algebra

Let A be an element of the lower twisted loop algebra. This means A = I + z−1A1 +
z−2A2 . . . , and that A infinitesimally preserves Ω. Â is defined to be the quantization
of the quadratic Hamiltonian that generates the vector field q 7→ Aq. I will denote this
vector field by ~A. It follows from symplectic linear algebra that the quadratic Hamiltonian
is 1

2 Ω(Af, f). Indeed,

d(
1
2

Ω(Af, f))(f′) =
1
2

Ω(Af′, f) +
1
2

Ω(Af, f′) = Ω(Af, f′) = (i~AΩ)f(f′)

where we think of f′ as a tangent vector at f. If we write f = q + p than the quadratic
Hamiltonian decomposes into two pieces.

1
2

Ω(A(q + p),q + p) =
1
2

Ω(Aq,q) + Ω(Aq,p)

The first term becomes multiplication by 1
2h̄ Ω(Aq,q). In the second term, only the power

series part of Aq will pair non trivially with p, so it is equal to Ω([Aq]+,p). This quantizes
to differentiation by the vector field ~π+A where π+ is projection toH+.

Â =
1

2h̄
Ω(Aq,q) + ~π+A
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Lower Twisted Loop Group

Let S = exp(A) be an element of the twisted loop group with only negative powers of z. Ŝ
is defined to be exp(Â) but there is a formula for Ŝ directly in terms of S. Gt = exp(tÂ)G
is determined by the differential equation

d
dt

Gt = ÂGt

Suppose the solution has the form Gt = (eWt G) ◦ e−tπ+A.

d
dt

Gt = (
d
dt

WteWt G + ~π+A · (eWt G)) ◦ e−tπ+A = ((
d
dt

Wt) ◦ e−tπ+A + ~π+A)Gt

Compairing this to ÂG we see that Wt must satisfy

(
d
dt

Wt)(e−tπ+Aq) =
1

2h̄
Ω(Aq,q)

or equivalently, noting that e−tπ+A = π+e−tA

d
dt

Wt(q) =
1

2h̄
Ω(Aπ+e−tAq,π+e−tAq)

We guess the anti-derivative Wt(q) = 1
2h̄ Ω(π+e−tAq, e−tAq).

d
dt

Ω(π+e−tAq, e−tAq) = Ω([A,π+]e−tAq, e−tAq)

Note that π+ + π− is identity, so

Aπ+ = (π+ + π−)Aπ+ = π+A + π−Aπ+

thus [A,π+] = π−Aπ+. π+ and π− are mutually adjoint with respect to Ω so our guess
is correct.

Wt(π+etAq) =
1

2h̄
Ω(π+e−tAπ+etAq, e−tAπ+etAq) =

1
2h̄

Ω(q, e−tAπ+etAq)

We set t = 1 and get the final quantization formula

ŜG(q) = eΩ(q,S−1π+Sq)G(π+Sq)
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